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Abstract

In agricultural studies, stochastic frontier
models are commonly used for measuring tech-
nical efficiency of an individual farm. In this
paper, we generalise these models to aliow
for environmental inefficiency. We begin by
reviewing standard stochastic frontier models
where the farm produces a single output. We
then generalise to the case where the farm pro-
duces several good outputs. The final model
we consider has both good and bad outputs.
In empirical studies, the latter are usually en-
vironmental pollutants. We discuss how both

the application of manure and chemical fertiliz-
ers. It is thus important to understand the na-
ture of the best practice technology available
to farmers for turning inputs into good and
bad outputs. Furthermore, it is important to
see how individual farmers measure up to this
technology. In other words, evaluation of farm
efficiency, both in producing as many good out-
puts and as few undesirable outputs as possible,
is erucial. In this paper, we describe how exten-
sions of stochastic frontier models can be used
to shed light on these issues. We begin by sur-
veying the standard stochastic frontier model

technical and environmental efficiency can be
measwred in the context of this model. These
methods are applied to a data set involving
Dutch dairy farms. The data set includes both
good outputs (milk and non-milk output) and

a bad output (a measure of Nitrogen surplus}.. .

Introduction

The environmental problems caused by mod-
ern agriculture present an increasingly worry-
ing pelicy problem. In the application used in
this paper, Dutch dairy farms produce not only
good oubputs, such as milk, but also undesir-
able outputs, such as excessive nitrogen due to

with one outpuf o make concrete the basic
ideas of efficiency analysis. We then generalise
to allow for several good outputs. Next, we con-
sider the case with several outputs, where some
of them can be undesirable. We then present

_some of the results for our empirical application

involving Dutch dairy farms.

The Stochastic Frontier Model with a Single Qutput

Stochastic frontier models are commonly
used in the empirical study of farm! efficiency

YWe will use the term “farm® to refer to the cross-
sectional unit of analysis. In practice, it could also he
the firm, individual or country, eic.
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e surnes. that all deviations from the frontier are

and productivity. The seminal papers in the
field are Aigner, Lovell and Schmidt {1977)
and Meeusen and van den Broeck (1977), while
a recent survey is provided in Bauer (1990).
The ideas underlying this class of models can
be demonstrated using a simple production
mode!?® where cutput of farm 4, Y7, is produced
using a vector of inputs, X;, (i =1...N}. The
best practice technology for turning inputs into
output depends on a vector of unknown para-
meters, &, and is given by:

Yi=f(Xs5). M

This so-called production frontier captures the
maximum amount of output that can be ob-
tained from a given level of inputs. In practice,
actueal output of & farm may fall below the max-
imum possible. The deviation of actual from
maximum output is a measure of inefficiency
and is the focus of interest in many applica-
tions. Formally, equation (1) can be extended
to:

Vi = f{ X5 B)rs, (2}

where 0 < 7; < 1 is a measure of farm-specific
efficiency and 7; = 1 indicates farm ¢ is fully
efficient.

The model given is equation (2) implicitly as-

to assume that the production frontier, f(-), is
log-linear {e.g. Cobb-Douglas or translog). We
define X; as a 1 x (k+ 1} vector {eg. X, = (1
L; K;) in the case of a Cobb-Douglas frontier
with two inputs, L and A7) and, hence, (3) can
be written as:

Yi =zl + v — 7, (4)
where 3 = (d,...0,), vi = In{¥:}, v = n{(,},
z; = —In{r;) and z; is the counterpart of X;

with the inputs transformed to logarithms. z; s
referred to as inefficiency and, since 0 < 7; < 1,
it Is a non-negative random variable. We as-
sume that the model contains an intercept with
coefficient f3,. Eguation {4} looks like the stan-
dard linear regression model, except that the
“error” is composed of two parts. This gives
rise to another name for these models, wviz
“composed error models”.

The econometric estimation of this model
can be done using classical or Bayesian ap-
proaches. In previous work, we have ar-
gued for the advantages of a Bayesian ap-
proach fo surmount some difficult issues in
classical sconometrics.  An introductory sur-
vey chapter, Koop and Steel {1999), discusses
Bayesian estimation and computation in detail
for this model. Classical econometric methods
are discussed in Horrace and Schmidt {1996).

due to inefficiency. However, following stan-
dard econometric practice, we add a random
error to the model, (;, to capture measurement
(or specification) error, resulting in:

Ve fXeBRG @)

The addition of measurement error makes the
frontier stochastic, hence the term “stochas-
tic frontier model”. We assume that data for
i = 1...N farms is available. It is common

2The discussion here focusses on production fron-
tiers. However, by suitably redefining ¥ and X, the
methods can be applied to cost frontiers.

For reasons of brevity, econometric estima-
tion will not be discussed in the present pa-
per. For all cases relating to single-output pro-
duction frontiers (e.g. with cross-sectional or
panel data, with linear or nonlinear produc-
tion frontiers, etc.) - the reader is referred to
Koop and Steel {1959) which is available af
http:/ /www.ed.ac.uk/ gkoop/.

The Stochastic Frontier Model with Muitiple Good
Dutputs

In Fernandez, Koop and Steel (1999a), we de-
veloped extensions of stochastic frontier models
to allow for efficiency analysis in the presence
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of multiple outputs. Note that previous work
with multiple outputs has often involved either
having data on prices (e.g. in order o estimate
a demand system) or on costs (e.g. in order
to estimate a cost function). However, particu-
larly in the case when some of the outputs are
not sold in markets {e.g. pollution}, such price
or cost information is not available. Hence, it
18 important to develop methods which involve
only output and input daza.

The theoretical starting point in most analy-
ses of multiple-output technology is a transfor-
mation function:

Hy, X)=0,

where y s now a vector of p good outputs and
X is a vector of inputs. If the transformation
function is separable then we can write it as:

#y) = h(X).

In the present paper, we assume a constant
elasticity of transformation form for 6(y), but
the basic ideas extend o any form.

To establish some terminology, note that
&(y) = constant maps out the output combina-
tions that are equivalent. Hence, it is referred
to as the production equivalence surface, which
is (p — 1)-dimensional. By analogy with the
single output case, h{X) defines the maximum

a set of NT' observations corresponding to out-
puts of NV different farms over 7" time periods is
available. The output of farm ¢ (7 = 1,..., N}
at time ¢ (t=1,...,7) is p-dimensional and is
given by the vector yu n = (Wae 1y, -« - Yiep) €
RE . We use the following transformation of the
p-dimensional output vector:

o 1/q
Oy = (Z of ygi‘z,j)) : (5)
i=1

with a; € (0,1) for all 7 = 1,...,p and such
that 327, c; = 1 and with ¢ > 1. For fixed
values of & = {@),...,05), g and 4, (5) de-
fines a (p — 1)-dimensional surface in NY. cor-
responding to all the p-dimensional vectors of
outputs y;;; that are technologically equiva-
lent. In other words, (5) plots the production
equivalence surface. Note that, regardless of
the value of g, the production equivalence sur-
face in (5) always intersects with the axes at
the same point, namely y; 5y = 845 /cv;, for all
J=1,...,pand all other outpuis equal to zero.
Thus, 8(;;) is easily visualized as the maximum
amount produced of each output multiplied by
its corresponding ;.

Given the transformation from the multivari-
ate output vector y(;;, to the univariate quan-
tity 61 (the parameters of which we estimate
from the data), the basic problem of finding

output {as measured by ¢(y)} that can be pro-
duced with inputs X and is referred to as the
production frontier. If measurement error did
not exist, all farms would lie on or within the

frontier and deviations from the frontier would
be interpreted as farm-specific inefficiency. In

essence, #(Y") can be treated as a kind of aggre-
gate output. Once 8(Y) is modelled, i can be
used in place of the single output in equation
(3} and standard single output methods of ef-
ficiency analysis can be used. This strategy is
formalized in the remainder of this section.
Since the empirical application used in the
present paper wmvolves panel data, we assume

farm-specific efficiencies is essentially the same
as in the single-output case. If we interpret
the value 8y, 4y as a kind of “aggregate output”,
then it is sensible to group these transformed
outputs in an NT-dimensional vector
ng f = (10g 9{1,1), .y iog g(l,T); oy log H(N:T))f,

(6)
and model log @ through the following stochas-
tic frontier model:

logl = V3~ Dz + oz (7)

In  the latter  equation, v =
(w{Xan) -, v(Xnm)) denotes an NT x k
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matrix of exogenous regressors, where v{(X(; )
is a A-dimensional function of the inputs KXo
corresponding to farm ¢ (f = 1,...,N) at
time ¢t (¢ =1,...,7). The particular choice of
v{-) defines the specification of the production
frontier: e.g. v(X;,) is the vector of all logged
inputs for a Cobb-Douglas technology, whereas
a translog frontier also involves squares and
cross products of these logs. The correspond-
ing vector of regression coefficients is denoted
by # € B C R* Often, theoretical consider-
ations will lead to regularity conditions on S,
which will restrict the parameter space B to a
subset of R*, still k-dimensional and possibly
depending on X. For instance, we typically
want to ensure thal the marginal products of
inputs are positive,

Technological inefficiency is captured by the
fact that farms may lie below the Fontier,
thus leading to a vector of inefficiencies v =
Dz e RYT where D is an exogenous NT x M
(M < NT} matrix and z € Z with Z = {z =
(z1,...,zn) €ERM Dz e RYTY. Through dif-
ferent choices of [, we can accommodaie var-
lous amounts of structure on the vector v of
mefficlencies. For instance, taking D = Iyr,
the NT-dimensional identity matrix, leads to
an inefficiency term which is specific to each
different farm and time period. ) = Iy & up,
where 7 is a T-dimensional vector of ones and

Koop and Steel (199%a) which is available at
http://www.ed.ac.uk/ ™ gkoop/.

The Stochastic Frontier Model with Multiple Good
and Bad Qutputs

Important issues in environmental policy
hinge on multiple output production technolo-
gies where some of the outputs are undesirable,
For instance, we have data on farms which pro-
duce good outputs {e.g. dairy products) for
the market and undesirable outputs (e.g. pol-
lutants). We will refer to undesirable outputs
as "had”. Efficiency analysis using stochastic
frontier models can be used to shed light on
practical policy questions. For instance, if we
find dairy farms to be environmentally efficient
then pollution can only be reduced by reducing
production at dairy farms. However, if many
dairy farms are highly environmentally ineffi-
cient, then by adopting best practice technol-
ogy poliution can be reduced without harming
production of milk,

Since undesirable outputs such as pollution
are almost invariably extremely difficult to
price, it is crucial to develop methods of econa-
metric inference which are based on the mul#i-
ple output transformation function. The ques-
tion arises as to how to adapt the analysis of
the previous section to allow for undesirable
outputs and both technical and envircnmental

@ denotes the Kronecker product, implies inef-
ficiency terms which are specific to each farm,
but constant over time (i.e. “individual effect-
8”7}, In our application we make the latter
choice for D). 8Since we are working in terms

of log @, the log of the aggregate cutput, the

efficiency corresponding to farm ¢ at period ¢
will be defined as exp{—;,,) where Vi 18 the
appropriate element of ~.

Bayesian methods, including a discussion
of prior elicitation and a Markov Chain
Monte Carlo algorithm for posterior simula-
tion, are discussed in detail in Fernandez,

inefficiency. Following Fernandez,  Koop and
Steel (1999b), we make one particular adap-
tation which we argue is reasonable. Oth-
ers are clearly possible, and these are a topic
of past and current research. For instance,

 Koop {1998} and Reinhard, Lovell and Thijssen

{1999) assume that undesirable outputs can be
treated as inputs. Here, we model the good out-
puts as in the previous section, but add a sec-
ond equation for the transformation function
of the bad outputs. Environmental efficiency is
measured relative to this second transformation
function.

Ifwe let b indicate a vector of m bad outputs,
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the most general description of best practice
technology is given by:

We assume this transformation function can
broken down into:
6(y) = h(X),
and
#{b) = ha(y).

In other words, the general transformation
function can be broken down into two equa-
tions involving a "good production equivalence
surface” #(y), a "good production frontier”
hi(X), an "environmental production equiva-
lence surface” k(b), and an ”environmental pro-
duction frontier” hs(y). The assumption that
the amount of good outputs produced depends
on the inputs, while production of bad outputs
depends on the amount of good outputs is likely
to be reasonable in many cases. If not, modifi-
cations of the present model can be done with
only slight alterations to the framework devel-
oped in Fernandez, Koop and Steel (1999b).

Formally, we begin with the model for the
good outputs given in the previous section
given by equations (5) and (7). We further
let b(i,t) = (b(i|g,1), -..,b(i‘f"m))’ be the vector of
m bad outputs for farm i in period t. We de-

U= (u(yay) - vlywxn)). U plays asimilar
role to V' in equation (7) and, hence, the par-
ticular choice of u(-) defines the specification of
the environmmenta!l production frontier. Envi-
ronmental efficiencies are given by Mv € RY7.
M plays an analogous role to D in the previ-
ous section and, as discussed above, different
choices for these imply different structure on
the inefficiencies. In our empirical work we set
M = D = Iy @ty which implies each farm has
a technical and environmental efficiency which
is constant over time.

Bayesian methods, including a discussion
of prior elicitation and a Markov Chain
Monte Carle algorithm for posterior simula-
tion, are discussed in detail in Fernandez,
Koop and Steel (1999b) which is available at
http:/ /www.ed.ac.uk/ " gkoop/.

Application to a Panel of Dutch Dairy Farms

‘We apply the techniques of the previous sec-
tion to a data set involving N=613 Dutch dairy
farms for the years 1991-94. For each farm
data on p = 2 good outputs (milk and non-milk
production), m = 1 bad output (nitrogen sur-
plus) and 3 inputs (labour, capital and variable
input) is available. Further detail on this data
set is given in Fernandez, Koop and Steel
(1999b), Reinhard, Lovell and Thijssen (1999)
or the University of Wageningen web site,

fine the environmental production equivalence
surface through the constant elasticity of trans-
formation form:

" 1/r
By = (Z'_T? b&,;,_,j)_)_ 1 O

Frl
with v, € (0,1} for all j = 1,...,m and such
that 3000, v; = 1 and with r > 1.
Environmental inefficiency is measured using
a stochastic frontier model with (8) as depen-
dent variable. That is, we define log # similarly
to log & and set

g =Us+Mv+&

(www.wau.nl/wub/wep/nr9707 /wep07 _1.htm).
Both the good and environmental production
frontiers are assumed to take Cobb-Douglas
forms. Complete details of the model specifi-
cation, including a discussion of distributional
forms for the errors, are given in. Fernandez,
Koop and Steel (1999b). The latter paper -
also has a much more detailed discussion of
empirical results.

Table 1 provides empirical resulis for this
data set. Note that the column labelled -
Median” is the posterior median, a common
point estimate. The columus labelled "2.5%"
and ”97.5” are the 2.5% and 97.5% percentiles,
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respectively of the posterior {i.e. lower and up-
per points of a 95% posterior density interval).
"RTS" means returns to scale, "Tech. Ef."
and "Env. Ef” are the technical and envi-
ronmental efficiencies for a typical or average
farm. Our model allows for technical and envi-
ronmental efficiencies to be correlated with one
another and "Eff. Corr.” is this correlation.

Table 1: Posterior Results for Dutch
Dairy Farm Data Set

[ Median | 2.6% | 97.5% |
3. (Intercept) | -3.637 | -3.744 | -3.531
Ba{Labour) 0.110 0.016 | 0.087
Bs(Capital) | 0.532 0.504 | 0.559
B4(Variable) | 0.473 0.014 | 0.453
RTS (Goods) | 1.115 | 1.0191 | 1.241
6 (Intercept) | 3.057 | 2.977 | 3.134
da(Milk) 0.896 0.870 | 0.922
83{Non-milk) | 0.088 0.074 | 0.101
RTS({Bads) $.983 0.956 | 1.011
Tech, Eff. 0.778 0.562 1 0.978
Env. Eff. 0.552 0.356 | 0.842
Ef. Corr. 0.344 0.148 | 0.512

All results seem reascnable. Some of the
more interesting results are:

s Iirms tend to be more efficient technically
then environmentally.

¢ The positive correlation between efficien-

We hesitate to draw policy conclusions based
solely on this one set of empirical results for one
model specification. However, to illustrate the
types of issues that our model can be used to
address, we offer the following comments. The
relatively large degree of environmental ineffi-
ciency indicates that poliution can be reduced
in many farms at little cost in terms of fore-
gone output. That is, if inefficient farms were
to adopt best practice technology and move to-
wards their environmental production frontiers,
production of pollutants could be reduced at no
cost to milk or non-milk production. The pos-
itive correlation between the two types of effi-
ciencles indicates that improving environmen-
tal efficiency could be associated with improve-
ments in technical efficienicy. Hence, policies
aimed at improving efficiency {e.g. by educat-
ing farmers in best-practice technology) could
have large payoffs. Furthermore, the pattern
of returns to scale results indicate that larger
farms have advantages. Hence, policies which
promote rationalization of farms (e.g. encour-
aging larger farms to purchase smaller farms)
could result both in more production of milk
and non-milk outputs (due to increasing re-
turns in the good production frontier) and less
pollution {due to decreasing returns in the en-
virormental production frontier).

cies indicates that farms which tend to be
less efficient technically also tend to be less
efficient environmentally.

e However, there is a large spread of effi-

-ciencies across farms, which manilests-it-
self in large differences between the 2.5 and
97.5th percentiles of both Tech. Eff. and
Env. Eff..

® Increasing returns to good output pro-
duction seerns to exist, while constant or
slightly decreasing returns exists for bad
output production.

Conclusions

In this paper, we have shown how the stan-

«lard stochastic fronmtier. model with. a single.

output can be extended to multiple oufputs
where some of the outputs are undesirable.
The model we develop can be used to under-
stand production technologies which produce
pollutants. The empirical application to Dutch
dairy farms shows the practicality of this ap-
proach and highlights the important policy is-
sues which our model can address.

—~ 1104~



References

Aigner, D.; Lovell, C.A.K. and Schmidt, P.
1977: Formulation and estimation of stochastic
frentier production function models. Journal of
Econometrics, 6, 21-37.

Bauer, P. 1890: Recent developments in the
econometric estimation of frontiers. Journal of
Feonometrics, 46, 39-56.

Ferndndez, C.; Koop, G. and Steel, M.F.J.
1999a: A Bayesian analysis of multiple output
production frontiers. manuscript.

Fernandez, C.; Koop, G. and Steel, M.F.J.
1999b: Multiple output production with unde-
sirable outputs. manuscript.

Horrace, W. and Schmidt, P. 1996: Confi-
dence statements for efficiency estimates from
stochastic frontiers. Journal of Productivity
Analysis, 7, 257-282.

Koop, G. 1998: Carbon dioxide emissions
and economic growth: A structural approach.
Journal of Applied Statistics, 25, 489-515.

Koop, G.; and Steel, M.F.J. 1999: Bayesian
analysis of stochastic frontier models. Forth-
coming in B. Baltagi, ed., Companion in Theo-
retical Econometrics, Basil Blackwell, Oxford.

Meeusen, W. and van den Broeck, J. 1977:
Efficiency estimation from Cobb-Douglas pro-
duction functions with composed errors. Inter-
national Economic Review, 8, 435-444,

Reinhard, S.; Lovell, C.A. K. and Thijssen,

G. 1999: " Econometric estimation of technical
and environmental efficiency: An application to
Dutch dairy farms,” American Journal of Agri-
cultural Fconomics, 81, 129-153.

- 1105 -



- 1106 -



